Building Data Analytics Solutions Using Amazon Redshift (BDASAR) Online
Starting dates and places
computer Online: Online Training 18 Mar 2025 |
computer Online: Online Training 10 Jun 2025 |
computer Online: Online Training 30 Sep 2025 |
Description
Kursinhalt
- Module A: Overview of Data Analytics and the Data Pipeline
- Module 1: Using Amazon Redshift in the Data Analytics Pipeline
- Module 2: Introduction to Amazon Redshift
- Module 3: Ingestion and Storage
- Module 4: Processing and Optimizing Data
- Module 5: Security and Monitoring of Amazon Redshift Clusters
- Module 6: Designing Data Warehouse Analytics Solutions
- Module B: Developing Modern Data Architectures on AWS
Voraussetzungen
Sie sollten mindestens ein Jahr Erfahrung in der Verwaltung von Data Warehouses mitbringen und folgende Kurse vorher besucht haben:
- Entweder AWS Technical Essentials (AWSE) oder Architecting on AWS (AWSA)
- Building Data Lakes on AWS (BDLA)
Zielgruppe
Dieser…
Frequently asked questions
There are no frequently asked questions yet. If you have any more questions or need help, contact our customer service.
Kursinhalt
- Module A: Overview of Data Analytics and the Data Pipeline
- Module 1: Using Amazon Redshift in the Data Analytics Pipeline
- Module 2: Introduction to Amazon Redshift
- Module 3: Ingestion and Storage
- Module 4: Processing and Optimizing Data
- Module 5: Security and Monitoring of Amazon Redshift Clusters
- Module 6: Designing Data Warehouse Analytics Solutions
- Module B: Developing Modern Data Architectures on AWS
Voraussetzungen
Sie sollten mindestens ein Jahr Erfahrung in der Verwaltung von Data Warehouses mitbringen und folgende Kurse vorher besucht haben:
- Entweder AWS Technical Essentials (AWSE) oder Architecting on AWS (AWSA)
- Building Data Lakes on AWS (BDLA)
Zielgruppe
Dieser Kurs richtet sich an Data Warehouse Engineers, Data Platform Engineers, sowie Architects und Operators, die Datenanalyse-Pipelines erstellen und verwalten.
Detaillierter Kursinhalt
Module A: Overview of Data Analytics and the Data Pipeline
- Data analytics use cases
- Using the data pipeline for analytics
Module 1: Using Amazon Redshift in the Data Analytics Pipeline
- Why Amazon Redshift for data warehousing?
- Overview of Amazon Redshift
Module 2: Introduction to Amazon Redshift
- Amazon Redshift architecture
- Interactive Demo 1: Touring the Amazon Redshift console
- Amazon Redshift features
- Practice Lab 1: Load and query data in an Amazon Redshift cluster
Module 3: Ingestion and Storage
- Ingestion
- Interactive Demo 2: Connecting your Amazon Redshift cluster using a Jupyter notebook with Data API
- Data distribution and storage
- Interactive Demo 3: Analyzing semi-structured data using the SUPER data type
- Querying data in Amazon Redshift
- Practice Lab 2: Data analytics using Amazon Redshift Spectrum
Module 4: Processing and Optimizing Data
- Data transformation
- Advanced querying
- Practice Lab 3: Data transformation and querying in Amazon Redshift
- Resource management
Interactive Demo 4: Applying mixed workload management on Amazon Redshift
- Automation and optimization
- Interactive demo 5: Amazon Redshift cluster resizing from the dc2.large to ra3.xlplus cluster
Module 5: Security and Monitoring of Amazon Redshift Clusters
- Securing the Amazon Redshift cluster
- Monitoring and troubleshooting Amazon Redshift clusters
Module 6: Designing Data Warehouse Analytics Solutions
- Data warehouse use case review
- Activity: Designing a data warehouse analytics workflow
Module B: Developing Modern Data Architectures on AWS
- Modern data architectures
Share your review
Do you have experience with this course? Submit your review and help other people make the right choice. As a thank you for your effort we will donate $1.- to Stichting Edukans.There are no frequently asked questions yet. If you have any more questions or need help, contact our customer service.