Machine Learning Algorithmen mit scikit-learn (Python)

Total time
Location
At location, Online
Starting date and place

Machine Learning Algorithmen mit scikit-learn (Python)

GFU Cyrus AG
Logo GFU Cyrus AG
Provider rating: starstarstarstarstar_border 7.9 GFU Cyrus AG has an average rating of 7.9 (out of 13 reviews)

Need more information? Get more details on the site of the provider.

Starting dates and places
computer Online: Zoom
9 Feb 2026 until 11 Feb 2026
placeKöln
18 May 2026 until 20 May 2026
computer Online: Zoom
18 May 2026 until 20 May 2026
placeKöln
12 Oct 2026 until 14 Oct 2026
computer Online: Zoom
12 Oct 2026 until 14 Oct 2026
placeKöln
30 Nov 2026 until 2 Dec 2026
computer Online: Zoom
30 Nov 2026 until 2 Dec 2026
Description

Schulungen der Extraklasse ✔ Durchführungsgarantie ✔ Trainer aus der Praxis ✔ Kostenfreies Storno ✔ 3=2 Kostenfreie Teilnahme für den Dritten ✔ Persönliche Lernumgebung ✔ Kleine Lerngruppen

Seminarziel

Entlang des Kurses werden die notwendigen Hintergründe mit dem Ziel gelernt, das Wissen in Selbstlernphasen praktisch einzusetzen. Etwa 50% des Kurses sind Übungsphasen, in denen mit Unterstützung des Dozenten Schwierigkeiten und typische Probleme gelöst werden. Dies ermöglicht, das Gelernte nach dem Seminar direkt im Unternehmen einzusetzen. 

Anhand vieler Übungsaufgaben begegnen die Teilnehmenden üblichen Praxisschwierigkeiten bei der Umsetzung, so dass der Übertrag auf eigene Daten im Unternehmen nach der Schulung leichter fällt. 

Inhalt

  • Grundlagen von Maschinellem Lernen
    • Unterscheidung Supervised - Unsupervised Learning (überwachtes - unüberwachtes Lernen)
    • Overfitting (Üb…

Read the complete description

Frequently asked questions

There are no frequently asked questions yet. If you have any more questions or need help, contact our customer service.

Schulungen der Extraklasse ✔ Durchführungsgarantie ✔ Trainer aus der Praxis ✔ Kostenfreies Storno ✔ 3=2 Kostenfreie Teilnahme für den Dritten ✔ Persönliche Lernumgebung ✔ Kleine Lerngruppen

Seminarziel

Entlang des Kurses werden die notwendigen Hintergründe mit dem Ziel gelernt, das Wissen in Selbstlernphasen praktisch einzusetzen. Etwa 50% des Kurses sind Übungsphasen, in denen mit Unterstützung des Dozenten Schwierigkeiten und typische Probleme gelöst werden. Dies ermöglicht, das Gelernte nach dem Seminar direkt im Unternehmen einzusetzen. 

Anhand vieler Übungsaufgaben begegnen die Teilnehmenden üblichen Praxisschwierigkeiten bei der Umsetzung, so dass der Übertrag auf eigene Daten im Unternehmen nach der Schulung leichter fällt. 

Inhalt

  • Grundlagen von Maschinellem Lernen
    • Unterscheidung Supervised - Unsupervised Learning (überwachtes - unüberwachtes Lernen)
    • Overfitting (Überanpassung), Aufteilung der Daten in Training vs. Testdaten
  • Datenhandling und Visualisierung
    • Daten mit dem Paket pandas einlesen
    • Daten auswählen und modifizieren
    • Daten visualisieren mit dem Paket seaborn
  • Supervised Learning Verfahren
    • Erklärung der Algorithmen, praktische Umsetzung in scikit-learn, Praxistipps
    • Lineare Regression
    • Logistische Regression (mit dem Paket statsmodels)
    • Entscheidungsbaum
    • Ensemble Methoden (Random Forest, AdaBoost)
    • Support Vector Machine
    • K-Nearest Neighbor
    • Multi-Layer Perceptron (MLP, ein einfaches Neuronales Netz)
  • Validierung und Interpretation der supervised Ergebnisse
    • Metriken, um die Vorhersagegüte bei Regression und Klassifikation zu bestimmen
    • Erklärung und Interpretation der Metriken
    • Umsetzung in scikit-learn
    • Klassifikation: Accuracy, True Positive Rate, True Negative Rate, Precision, Recall, confusion matrix, ROC Score, AUC
    • Regression: MSE (mean squared error), MAE (mean absolute error)
  • Unsupervised Learning Verfahren
    • K-means Clustering und DBSCAN
    • Cluster-Ergebnisse anhand von Metriken einschätzen und interpretieren
    • Vergleich von Cluster-Ergebnissen über verschiedene Algorithmen hinweg
  • Machine Learning - Anwendungen für die Praxis
    • Hyperparameter bei den Algorithmen setzen 
    • Semi-automatische Hyperparametersuche bei Algorithmen (Hyperparameter Tuning)
    • Kreuzvalidierung

There are no reviews yet.
    Share your review
    Do you have experience with this course? Submit your review and help other people make the right choice. As a thank you for your effort we will donate $1.- to Stichting Edukans.

    There are no frequently asked questions yet. If you have any more questions or need help, contact our customer service.