MLOps Engineering on AWS (MLOE)

Total time
Location
At location
Starting date and place

MLOps Engineering on AWS (MLOE)

Fast Lane Institute for Knowledge Transfer GmbH
Logo Fast Lane Institute for Knowledge Transfer GmbH
Provider rating: starstarstarstarstar_half 9.0 Fast Lane Institute for Knowledge Transfer GmbH has an average rating of 9.0 (out of 34 reviews)

Need more information? Get more details on the site of the provider.

Starting dates and places
placeBerlin
11 Mar 2026 until 13 Mar 2026
placeFrankfurt
11 May 2026 until 13 May 2026
placeBerlin
22 Jul 2026 until 24 Jul 2026
placeHamburg
7 Oct 2026 until 9 Oct 2026
placeFrankfurt
18 Nov 2026 until 20 Nov 2026
Description

Kursinhalt

  • Module 0: Welcome
  • Module 1: Introduction to MLOps
  • Module 2: MLOps Development
  • Module 3: MLOps Deployment
  • Module 4: Model Monitoring and Operations
  • Module 5: Wrap-up

Voraussetzungen

Erforderlich:

  • AWS Technical Essentials (AWSE)
  • DevOps Engineering on AWS (AWSDEVOPS)
  • Practical Data Science with Amazon SageMaker (PDSASM)

Zusätzlich Empfohlen:

  • The Elements of Data Science (digitaler Kurs) oder gleichwertige Erfahrung
  • Machine Learning Terminology and Process (digitaler Kurs)

Zielgruppe

  • DevOps Engineers
  • ML Engineers
  • Entwickler/Betriebe mit Verantwortung für die Operationalisierung von ML-Modellen

Detaillierter Kursinhalt

Module 0: Welcome

  • Course introduction

Module 1: In…

Read the complete description

Frequently asked questions

There are no frequently asked questions yet. If you have any more questions or need help, contact our customer service.

Kursinhalt

  • Module 0: Welcome
  • Module 1: Introduction to MLOps
  • Module 2: MLOps Development
  • Module 3: MLOps Deployment
  • Module 4: Model Monitoring and Operations
  • Module 5: Wrap-up

Voraussetzungen

Erforderlich:

  • AWS Technical Essentials (AWSE)
  • DevOps Engineering on AWS (AWSDEVOPS)
  • Practical Data Science with Amazon SageMaker (PDSASM)

Zusätzlich Empfohlen:

  • The Elements of Data Science (digitaler Kurs) oder gleichwertige Erfahrung
  • Machine Learning Terminology and Process (digitaler Kurs)

Zielgruppe

  • DevOps Engineers
  • ML Engineers
  • Entwickler/Betriebe mit Verantwortung für die Operationalisierung von ML-Modellen

Detaillierter Kursinhalt

Module 0: Welcome

  • Course introduction

Module 1: Introduction to MLOps

  • Machine learning operations
  • Goals of MLOps
  • Communication
  • From DevOps to MLOps
  • ML workflow
  • Scope
  • MLOps view of ML workflow
  • MLOps cases

Module 2: MLOps Development

  • Intro to build, train, and evaluate machine learning models
  • MLOps security
  • Automating
  • Apache Airflow
  • Kubernetes integration for MLOps
  • Amazon SageMaker for MLOps
  • Lab: Bring your own algorithm to an MLOps pipeline
  • Demonstration: Amazon SageMaker
  • Intro to build, train, and evaluate machine learning models
  • Lab: Code and serve your ML model with AWS CodeBuild
  • Activity: MLOps Action Plan Workbook

Module 3: MLOps Deployment

  • Introduction to deployment operations
  • Model packaging
  • Inference
  • Lab: Deploy your model to production
  • SageMaker production variants
  • Deployment strategies
  • Deploying to the edge
  • Lab: Conduct A/B testing
  • Activity: MLOps Action Plan Workbook

Module 4: Model Monitoring and Operations

  • Lab: Troubleshoot your pipeline
  • The importance of monitoring
  • Monitoring by design
  • Lab: Monitor your ML model
  • Human-in-the-loop
  • Amazon SageMaker Model Monitor
  • Demonstration: Amazon SageMaker Pipelines, Model Monitor, model registry, and Feature Store
  • Solving the Problem(s)
  • Activity: MLOps Action Plan Workbook

Module 5: Wrap-up

  • Course review
  • Activity: MLOps Action Plan Workbook
  • Wrap-up
There are no reviews yet.
Share your review
Do you have experience with this course? Submit your review and help other people make the right choice. As a thank you for your effort we will donate $1.- to Stichting Edukans.

There are no frequently asked questions yet. If you have any more questions or need help, contact our customer service.