Deep Learning für die Satellitenbildanalyse

Total time
Location
At location, Online
Starting date and place

Deep Learning für die Satellitenbildanalyse

GFU Cyrus AG
Logo GFU Cyrus AG
Provider rating: starstarstarstarstar_border 7.9 GFU Cyrus AG has an average rating of 7.9 (out of 13 reviews)

Need more information? Get more details on the site of the provider.

Starting dates and places
placeKöln
4 May 2026 until 8 May 2026
computer Online: Zoom
4 May 2026 until 8 May 2026
placeKöln
24 Aug 2026 until 28 Aug 2026
computer Online: Zoom
24 Aug 2026 until 28 Aug 2026
placeKöln
9 Nov 2026 until 13 Nov 2026
computer Online: Zoom
9 Nov 2026 until 13 Nov 2026
Description

Schulungen der Extraklasse ✔ Durchführungsgarantie ✔ Trainer aus der Praxis ✔ Kostenfreies Storno ✔ 3=2 Kostenfreie Teilnahme für den Dritten ✔ Persönliche Lernumgebung ✔ Kleine Lerngruppen

Seminarziel

Der Deep-Learning-Kurs behandelt die Grundlagen der Anwendung des maschinellen Lernens auf die Satellitenbildanalyse. Die Teilnehmer beginnen mit der grundlegenden Regressionsanalyse und gehen dann zu neuronalen Netzen, CNNs und U-Net für die Gebäudeextraktion und Landbedeckungskartierung über. 

Dieser Kurs bietet einen umfassenden Überblick über verschiedene Deep-Learning-Techniken zur Analyse von Satelliten- und Luftbildern einschließlich Architekturen, Modellen und Algorithmen für Aufgaben wie Klassifizierung, Segmentierung und Objekterkennung. 

Inhalt

  • Künstliche Neuronale Netze (ANN) 
    • Backpropagation, Regularisierung
    • Stochastischer Gradientenabstieg, verschiedene Optimier…

Read the complete description

Frequently asked questions

There are no frequently asked questions yet. If you have any more questions or need help, contact our customer service.

Didn't find what you were looking for? See also: Cisco, CompTIA A+ / Network+ / Security+, IT Security, Professional Networking, and Security.

Schulungen der Extraklasse ✔ Durchführungsgarantie ✔ Trainer aus der Praxis ✔ Kostenfreies Storno ✔ 3=2 Kostenfreie Teilnahme für den Dritten ✔ Persönliche Lernumgebung ✔ Kleine Lerngruppen

Seminarziel

Der Deep-Learning-Kurs behandelt die Grundlagen der Anwendung des maschinellen Lernens auf die Satellitenbildanalyse. Die Teilnehmer beginnen mit der grundlegenden Regressionsanalyse und gehen dann zu neuronalen Netzen, CNNs und U-Net für die Gebäudeextraktion und Landbedeckungskartierung über. 

Dieser Kurs bietet einen umfassenden Überblick über verschiedene Deep-Learning-Techniken zur Analyse von Satelliten- und Luftbildern einschließlich Architekturen, Modellen und Algorithmen für Aufgaben wie Klassifizierung, Segmentierung und Objekterkennung. 

Inhalt

  • Künstliche Neuronale Netze (ANN) 
    • Backpropagation, Regularisierung
    • Stochastischer Gradientenabstieg, verschiedene Optimierer
    • Verschiedene Loss-Funktionen
    • Initialisierung der Gewichte
    • Epoche und Batch-Size
    • Callbacks, Early Stopping
  • Faltungsneuronale Netze (CNNs) 
    • Max Pooling, CNN Architekturen
    • Padding und Stride
    • Filter und Faltungsschichten 
  • Programmtechnische Umsetzung mit PyTorch und TensorFlow 
  • Transfer Learning und vortrainierte Netze
  • Moderne Convolutional Netzwerke
    • VGG16, VGG19, U-Net, ResNet50
  • Klassifizierung von Bildern 
    • Softmax-Layer, Cross-Entropy Loss
  • Detektion von Objekten durch Bounding Boxes (YOLO, Fast-RCNN, ....)
    • Netzwerk mit zwei verschiedenen Outputs
    • Mean-Squared-Error und Cross-Entropy Loss
    • Trainingsgüte: Intersection over Union (IoU)
  • Semantische Segmentierung (pixelweises Klassifizieren)
    • Cross-Entropy Loss für Multiclass Segmentierung
    • mean IoU in der semantischen Segmentierung
    • Vorstellung bekannter Netzwerkarchitekturen: U-Net, ResNet50
    • Up-Convolution und Transpose Convolution
    • UNet, PSPNet, DeepLab, PAN, UNet++, 
    • Hyperparameter-Optimierung 
  • Training mit wenig Daten
    • Erweiterung des Training-Datensatzes durch Data Augmentation
    • Umsetzung in Keras
  • Fine-Tuning
    • Weitere bekannte Netzwerkarchitekturen: Inception-V3, ResNet,
    • Code von (bereits trainierten) Netzwerken finden
    • Verwendung von vortrainierten Netzwerken sowie nachtrainieren (Fine-Tuning)

Der Schwerpunkt des Seminars liegt auf der Durchführung von Übungen. In den folgenden Modulen werden die Programme (Python) auf Basis TensorFlow bzw. PyTorch entwickelt:

  • Übung 1: Erstellung von Deep Learning-Trainingsdatensätzen
  • Übung 2: Bildklassifizierung (z. B. Flüsse, Wald, Straßen,...)
  • Übung 3: Landnutzung und Bodenbedeckung mit Hilfe von hyperspektralen Satellitenbildern
  • Übung 4: Objekterkennung (z. B. Schwimmbäder, Autos, Flugzeuge...)
  • Übung 5: Bildsegmentierung einzelner Klassen (z.B. Gebäudeerkennung...)
  • Übung 6: Bildsegmentierung mehrerer Klassen (z.B. Landnutzung / Landbedeckung) 
There are no reviews yet.
    Share your review
    Do you have experience with this course? Submit your review and help other people make the right choice. As a thank you for your effort we will donate $1.- to Stichting Edukans.

    There are no frequently asked questions yet. If you have any more questions or need help, contact our customer service.