AWS SageMaker Python SDK für Machine-Learning-Modelle

Total time
Location
At location, Online
Starting date and place

AWS SageMaker Python SDK für Machine-Learning-Modelle

GFU Cyrus AG
Logo GFU Cyrus AG
Provider rating: starstarstarstarstar_border 7.5 GFU Cyrus AG has an average rating of 7.5 (out of 11 reviews)

Need more information? Get more details on the site of the provider.

Starting dates and places

placeKöln
13 Feb 2025 until 14 Feb 2025
computer Online: Zoom
13 Feb 2025 until 14 Feb 2025
placeKöln
22 May 2025 until 23 May 2025
placeKöln
22 May 2025 until 23 May 2025
computer Online: Zoom
22 May 2025 until 23 May 2025
computer Online: Zoom
22 May 2025 until 23 May 2025
placeKöln
5 Jun 2025 until 6 Jun 2025
computer Online: Zoom
5 Jun 2025 until 6 Jun 2025
placeKöln
17 Jul 2025 until 18 Jul 2025
computer Online: Zoom
17 Jul 2025 until 18 Jul 2025
placeKöln
18 Sep 2025 until 19 Sep 2025
computer Online: Zoom
18 Sep 2025 until 19 Sep 2025
placeKöln
23 Oct 2025 until 24 Oct 2025
computer Online: Zoom
23 Oct 2025 until 24 Oct 2025
placeKöln
27 Nov 2025 until 28 Nov 2025
computer Online: Zoom
27 Nov 2025 until 28 Nov 2025
placeKöln
15 Jan 2026 until 16 Jan 2026
computer Online: Zoom
15 Jan 2026 until 16 Jan 2026
placeKöln
5 Feb 2026 until 6 Feb 2026
computer Online: Zoom
5 Feb 2026 until 6 Feb 2026

Description

Schulungen der Extraklasse ✔ Durchführungsgarantie ✔ Trainer aus der Praxis ✔ Kostenfreies Storno ✔ 3=2 Kostenfreie Teilnahme für den Dritten ✔ Persönliche Lernumgebung ✔ Kleine Lerngruppen

Seminarziel

Das Seminar zielt darauf ab, Teilnehmende mit den Fähigkeiten auszustatten, AWS SageMaker umfassend zu nutzen, um Machine-Learning-Modelle von der Entwicklung über das Training bis hin zum Deployment effektiv zu managen. Es vermittelt praktische Kenntnisse in der Datenvorbereitung, Modellauswahl, Optimierungstechniken und den Einsatz von SageMaker-Funktionen für skalierbare Lösungen. Die Teilnehmenden lernen, wie sie die Tools und Dienste von SageMaker einsetzen, um den gesamten Lebenszyklus von Machine-Learning-Projekten zu optimieren und dabei Sicherheitsbest Practices sowie Kostenmanagementstrategien zu berücksichtigen.

Inhalt

  • Übersicht über AWS SageMaker
    • Erkunden Sie die u…

Read the complete description

Frequently asked questions

There are no frequently asked questions yet. If you have any more questions or need help, contact our customer service.

Schulungen der Extraklasse ✔ Durchführungsgarantie ✔ Trainer aus der Praxis ✔ Kostenfreies Storno ✔ 3=2 Kostenfreie Teilnahme für den Dritten ✔ Persönliche Lernumgebung ✔ Kleine Lerngruppen

Seminarziel

Das Seminar zielt darauf ab, Teilnehmende mit den Fähigkeiten auszustatten, AWS SageMaker umfassend zu nutzen, um Machine-Learning-Modelle von der Entwicklung über das Training bis hin zum Deployment effektiv zu managen. Es vermittelt praktische Kenntnisse in der Datenvorbereitung, Modellauswahl, Optimierungstechniken und den Einsatz von SageMaker-Funktionen für skalierbare Lösungen. Die Teilnehmenden lernen, wie sie die Tools und Dienste von SageMaker einsetzen, um den gesamten Lebenszyklus von Machine-Learning-Projekten zu optimieren und dabei Sicherheitsbest Practices sowie Kostenmanagementstrategien zu berücksichtigen.

Inhalt

  • Übersicht über AWS SageMaker
    • Erkunden Sie die umfangreichen Funktionen von AWS SageMaker, darunter integrierte Jupyter-Notebooks, vordefinierte Datenquellen und Modell-Hosting-Services. Diskutieren Sie, wie SageMaker die Entwicklung und Bereitstellung von Machine-Learning-Modellen vereinfacht.
    • Anleitung zur Einrichtung einer SageMaker-Umgebung, inklusive der Installation des SageMaker Python SDKs, Konfiguration von IAM-Rollen und Authentifizierungsmethoden für einen sicheren Zugriff auf AWS-Ressourcen.
  • Daten vorbereiten und in SageMaker laden
    • Untersuchung der Methoden zur Datenvorbereitung für Machine Learning, einschließlich der Bereinigung, Feature-Extraktion und Datentransformation. Betrachtung der Bedeutung von Datenformaten und wie sie die Modellleistung beeinflussen.
    • Einführung in Amazon S3 als robuste und skalierbare Lösung für die Datenspeicherung. Praktische Demonstration, wie Daten in S3 Buckets hochgeladen und für Trainingsjobs in SageMaker zugänglich gemacht werden.
  • Auswahl und Training von Machine-Learning-Modellen
    • Überblick über die in SageMaker verfügbaren vorgefertigten Machine-Learning-Algorithmen und Frameworks. Erläuterung der Kriterien für die Auswahl des passenden Modells basierend auf dem Anwendungsfall.
    • Detaillierte Erklärung des Prozesses zur Einrichtung und Durchführung von Training Jobs in SageMaker, inklusive der Konfiguration von Hardware-Ressourcen, Auswahl von Hyperparametern und der Nutzung von Spot-Instances zur Kosteneinsparung.
  • Modellbewertung und -optimierung
    • Diskussion über die verschiedenen Metriken und Techniken zur Bewertung der Leistung von Machine-Learning-Modellen. Vorstellung von Methoden zur Visualisierung und Interpretation der Ergebnisse.
    • Anleitung zum Hyperparameter Tuning in SageMaker, einschließlich der Verwendung von automatisierten Suchstrategien und der Bewertung ihrer Auswirkungen auf die Modellleistung.
  • Deployment von Modellen
    • Erklärung der Schritte zur Erstellung und Konfiguration von SageMaker-Endpoints für die Bereitstellung von Modellen in der Produktion. Diskussion der Best Practices für das Deployment, einschließlich Versionierung und A/B-Testing.
    • Einführung in das automatische Scaling von Endpoints basierend auf der Anfragebelastung und Tipps zur Überwachung der Leistung von Modell-Endpoints.
  • Integration von SageMaker in ML-Pipelines
    • Erläuterung, wie SageMaker in umfassende Machine-Learning-Pipelines integriert werden kann, von der Datenvorbereitung bis zum Modell-Training und -Deployment. Vorstellung von SageMaker Pipelines zur Automatisierung und Orchestrierung des gesamten ML-Workflows.
    • Praxisnahe Beispiele für die Erstellung und Ausführung von ML-Pipelines in SageMaker, inklusive der Versionierung von Pipelines und der Wiederverwendung von Komponenten.
  • Anwendung von Reinforcement Learning
    • Einführung in die Grundlagen und Anwendungsfälle von Reinforcement Learning (RL). Diskussion der in SageMaker verfügbaren RL-Frameworks und Umgebungen.
    • Schritt-für-Schritt-Anleitung zur Einrichtung und Durchführung von RL-Experimenten in SageMaker, inklusive der Auswahl von Algorithmen, Definition von Belohnungsfunktionen und Evaluation der Modellperformance.
  • Verwendung von SageMaker Studio
    • Vorstellung von SageMaker Studio als integrierte Entwicklungsumgebung (IDE) für Machine Learning. Überblick über die Funktionen, einschließlich des visuellen Datenpräparierungstools, Experiment-Management und Modell-Monitoring.
    • Anwendungsbeispiele für SageMaker Studio, um die Produktivität bei der Entwicklung von Machine-Learning-Modellen zu steigern, von der Datenanalyse über das Modell-Training bis hin zum Deployment.
  • Sicherheit und Zugriffskontrolle in SageMaker
    • Diskussion der Sicherheitsaspekte in SageMaker, einschließlich der Konfiguration von IAM-Rollen, Verschlüsselung von Daten in Ruhe und Übertragung sowie der Einrichtung von VPC-Endpunkten.
    • Anleitung zur Einrichtung von Zugriffskontrollen und feingranularen Berechtigungen für Teams, um einen sicheren und kontrollierten Zugriff auf SageMaker-Ressourcen und -Funktionen zu gewährleisten.
  • Kostenmanagement und Best Practices
    • Überblick über die Kostenstruktur in SageMaker und Strategien zur Kostenoptimierung, einschließlich der Auswahl geeigneter Instanztypen, Verwendung von Spot-Instances und Monitoring der Ressourcennutzung.
    • Zusammenfassung der Best Practices für den effizienten und kosteneffektiven Einsatz von SageMaker, von der Ressourcenplanung bis hin zur Optimierung von Workflows und der Nutzung von SageMaker-Funktionen.
There are no reviews yet.

Share your review

Do you have experience with this course? Submit your review and help other people make the right choice. As a thank you for your effort we will donate $1.- to Stichting Edukans.

There are no frequently asked questions yet. If you have any more questions or need help, contact our customer service.